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ABSTRACT

One of the challenging problems in large-scale recommendation
systems is to retrieve relevant candidates accurately and efficiently.
Graph-based retrievals have been widely deployed in industrial
recommendation systems. Previous graph-based methods depend
on integrated graph infrastructures because of inherent data depen-
dency in graph learning. However, it could be expensive to develop
a graph infrastructure. In this paper, we present a simple and ef-
fective graph-based retrieval method, which does not need any
graph infrastructures. We conduct extensive offline evaluations and
online tests in a real-world recommendation system. The results
show that the proposed method outperforms the existing methods.
The source code of our algorithm is available online!.
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1 INTRODUCTION

Recommendation systems are important in various commercial
platforms. The objective of these systems is to connect users to
relevant items from a large corpus based on user features and
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behaviors. Due to the large size of users and items, many industrial
systems consist of a retrieval stage and a ranking stage. The purpose
of a retrieval stage is to retrieve a small fraction of relevant items
at a low computational cost and latency, and a ranking stage is
deployed to further refine the ranking of these items according to
the user’s interest.

Item-based collaborative filtering (Item-CF) [8] is one of the
successful retrieval methods in recommendation systems. It con-
siders the similarities between items and items based on their co-
occurrence patterns. Recently, graph-based retrieval methods have
been widely adopted in industrial recommendations. Pinterest de-
ploys a data-efficient Graph Convolutional Network (GCN) algo-
rithm called Pinsage [13], which combines efficient random walks
and graph convolutions to generate embeddings of nodes. Alibaba
proposes a Path-based Deep Network (PDN) [4], which incorporates
both personalization and diversity to enhance retrieval performance.
PDN models the user-item relationship with a 2-hop graph.

Graph-based retrieval methods learn a low-dimensional embed-
ding for each node in a graph and consider the similarities between
node embeddings. Previous graph embedding methods, such as
DeepWalk [5], node2vec [2], and GraphSAGE [3], usually need to
sample multi-hop neighbors to achieve better performances. Due to
the multi-hop data dependency and large-scale graph data, indus-
trial recommendation systems need to incorporate a graph service
for graph learning. However, it could be expensive to develop such
a graph service. One needs to consider efficiency, scalability as well
as fault tolerance.

Capturing a node’s position within a graph is crucial for rec-
ommendation systems. Two users that view a lot of similar items
should have a small distance in the embedding space. Many pre-
vious graph embedding methods are structure-aware instead of
distance-aware [14]. DeepWalk [5] and node2vec [2] are distance-
aware methods. However, they do not explicitly model the distance
metric in the objective function, which limits their distance-aware
property. In our method, we design an objective function that ex-
plicitly considers the distance metric in spherical space.

In this paper, we present a simple graph-based retrieval method,
which does not need a graph service and can support online graph
embedding learning. To reduce the dependency of multi-hop neigh-
bors in graph learning, we apply only one-hop neighbors for each
node. Furthermore, we model the graph learning task in a spherical
space to improve the performance. We empirically find that our
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Figure 1: Previous graph embedding methods model the
neighbor interaction via inner-product in Euclid space. Our
method model the neighbor interaction via distance in spher-
ical space.

method achieves better results than other multi-hop-based methods,
such as DeepWalk and node2vec.

2 METHOD
2.1 Spherical Graph Embedding

We assume a user-item graph is represented as G = {V, E}, where
V ={v1,02,...,on} and & =V X V are node set and edge set re-
spectively. The node in graph G could be a user or an item. A graph
embedding method aims to learn a mapping function f : V — R4
that projects each node v; to a vector f(v;) in a d-dimensional
(d < N) space. We define N (u) as a K-hop neighborhood of u.
Graph embedding methods aim to maximize the log-probability
of observing a neighborhood Nk (u) of node u given its representa-

tion f(u):

max " log Pr (N (u)|f (). (1)
f ueV
Where
Pr(Ng(w)|f(w) = ]_[ Pr(ni|f(u)) @)
n,—eNK(u)

exp (f(ni) - f(w))
Zoev exp (f(0) - f(w))

Function (2) and (4) are known as conditional independence and
symmetry assumptions.

Previous methods model objective functions in Euclid space and
depend on multi-hop neighbor samplings. In this work, we model
the objective function in spherical space. Many works [12] from
other domains show that learning in spherical space achieves better
results. As shown in Figure 1, we define the symmetry assumption
function in spherical space as:

Pr(nilf(u)) =

®)

exp (—dz(ni, u))
Yoey exp (—d(v,u))

Pr(nilf(u) = ©
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where
fln) — f(w)
If(mallz [1f @llz ]l
Under the conditional independence and symmetry assumptions,
the objective (1) is equivalent to:

d(nj,u) =

min Z a Z d?(n;, u) + flog Z, (5)
f ueV n; Nk (u)
Zu= > exp (—dz(u, o)) ©6)
veV

Z, is the per-node partition function. Following the parameter
settings in [12], we introduce two hyper-parameters « and f in
our objective function. To reduce the data dependency between
nodes, we set K = 1 in our implementation, and each node can
only sample its 1-hop neighbors, To minimize the function (5), we
approximate it using the in-batch negative sampling method and
optimize it using the stochastic gradient descent method.

2.2 System

Many industrial recommendation systems apply online learning
methods. All the user behaviors are converted to training instances
immediately for further training. Generally, a single training in-
stance can be formulated as:

(user id, item id, features, label)

The features consist of user features, item features, and context
features. A label indicates a user’s behavior on an item. For example,
we can define label = 1 if a user clicks an item, and label = 0 if the
user does not click an item.

Figure 2 shows the typical retrieval stage in an industrial recom-
mendation system. Most industrial recommendation systems deploy
multiple retrieval modules in parallel. We use Other Retrievals to
denote other retrieval modules and detail the graph-based retrieval
in Figure 2 since we focus on graph-based retrieval in this work.
From the training instances or all users’ behaviors in a time inter-
val, one can generate a user-item heterogeneous graph via Graph
Builder, which could be a MapReduce job. For example, if a user has
clicked an item, there could be an edge between them in the graph.
The Graph Builder usually runs daily to generate graph data since
the real industrial graph data could be huge. The Graph Service
module takes the generated graph data as input, and the Trainer
module samples nodes and edges from the Graph Service for graph
embedding learning.

However, the previous graph-based retrieval methods have a
few limitations. First, one needs to implement a graph service with
large memory and high bandwidth networks. The properties of fault
tolerance also should be considered. The multi-hop data dependency
and the graph scale lead to the need of a graph service.

In our method, we model the graph embedding learning in spher-
ical space and restrict the data dependency to be one-hop. Based
on this idea, we design a graph-based retrieval without resorting
to a graph service, as shown in Figure 3. In the training instances,
we introduce a new feature recent item id, which is the item a user
recently clicked. In a positive training instance (label=1), both the
user id and the recent item id could be viewed as a one-hop neighbor
of the item id in an implicit graph. We filter out all the negative
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Figure 3: Our method supports online graph embedding learning.

training instances, and the graph embedding trainer updates its
parameters based on the (item id, user id) and (item id, recent item
id) pairs, which are the edges in an implicit graph. In this way, we
do not need a graph service, and the learning method is online.

3 EXPERIMENTS ON PUBLIC DATASETS

In this section, we evaluate the proposed approach on the unsuper-
vised node classification task to answer the following questions:
How does our one-hop-based graph embedding method perform
compared to other methods? The CogDL toolkit [1] and the follow-
ing datasets are used for evaluation.

e BlogCatalog [15] is a social blogger graph. It has 10,312 nodes,
333,983 edges, and 39 different labels. The node labels are
the Bloggers’ interests.

e DBLP [10] is an academic citation graph where authors are
treated as nodes. It has 51,264 nodes, 127,968 edges and 60
different labels. The node labels are the authors’ dominant
conferences.

e Flickr [11] is a user contact graph in Flickr. It has 80,513
nodes, 5,899,882 edges and 195 different labels. The node
labels represent user’s interest groups.

We use SGD with momentum as the optimizer. The learning rate
is set with starting value of 0.025 and decays linearly to 0.0001.
The embedding size is set to 128. Table 2 shows the other param-
eters used by our method. For the other methods, we used the
parameters provided by the CogDL Toolkit [1] with the option
use_best_config=True. When evaluating node2vec and DeepWalk,
we set the walk length to 80. We randomly sample a portion of
labeled nodes for training and use the rest for testing. For Blog-
catalog, the training ratio is set to 50%. For DBLP and Flickr, the
training ratio is set to 5%. We run our method 5 times, and report
the mean result in table 1. From the results, we find that our method
outperforms node2vec and DeepWalk. The node2vec and DeepWalk
both are multi-hop-based methods. Compared with the one-hop-
based LINE method, our method achieves a significant performance
improvement.

We further compare our method with the matrix factorization(MF)
based methods. From table 1, we can find that MF-based methods
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Table 1: Micro-F; scores for multi-label node classification
on Blogcatalog, DBLP and Flicker graphs.

Method Blogcatalog (50%) DBLP (5%)  Flickr (5%)
NetMF [7] 42.47+0.35 56.72+0.14  36.27+0.17
ProNE [16] 41.14£0.26  56.85+£0.28  36.56+0.11
NetSMF [6] 40.62+0.35  59.76+0.41  35.49+0.07
node2vec [2] 40.16+£0.29  57.36+0.39  36.13+0.13
LINE [9] 38.06+0.39  49.78+0.37 31.61+0.09
DeepWalk [5] 40.48+0.47 57.54+0.32  36.09+0.10
Our method 42.63+0.47 60.32+0.10 36.75+0.11

like NetMF[7] and ProNE[16] are very powerful as they achieve bet-
ter results than previous graph embedding based methods. However,
our method outperforms the MF-based methods on all datasets.

Table 2: The parameters used by our method.

Dataset batch size « B
Blogcatalog 128 05 0.75
DBLP 256 05 0.1
Flickr 512 0.5 1.5

4 LIVE EXPERIMENTS

In this section, we show our experiments in a real-world news-feed
application. It has hundreds of millions of users. We report both
the offline evaluation and the online A/B testing results.

4.1 Offline Evaluation

For offline evaluation, we build a user-item graph for training from
all users’ behaviors in one day and construct a graph for testing
from all users’ behaviors the next day. After training, we apply the
generated item embedding to evaluate the similarities between the
items in the testing graph. Specifically, we use Mean Reciprocal
Rank (MRR), which is a measure to evaluate systems that return a
list of recommended items for query items:

MRR—li !
o) T rank;

Due to the large pool of items, we roughly estimate the rank in
the following way. For each item g, we sample a neighbor item
p from the testing graph and randomly sample a batch of items
(n1,ng,- -+, np) from the item pool, where b = 512. The rank is esti-
mated by sorting the score list sim(q, p), sim(q, n1), - - -, sim(q, np),
where sim(, -) is a function to compute the inner product of the
normalized item embeddings. We set the batch size to be 512 for all
the methods. For node2vec, we use p = 1, ¢ = 1, and set the walk
length to be 20. For GraphSAGE, we use sample sizes S1=10 and S
= 10 for first and second hop sampling, respectively.

Table 3 compares the performance of the various approaches
using the MRR. Our method achieves the best performance at 0.0974
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Table 3: MRR for our method and other baselines.

Method MRR
node2vec [2] 0.0955
LINE [9] 0.0874
GraphSAGE [3] 0.0843
Our method 0.0974

Table 4: Online A/B testing results. An improvement of 0.2%
in Duration/U is regarded as significant in our system.

Method Read/U (%) Duration/U (%) Latency (%)
+LINE [9] +0.198 -0.0457 +0.923
+node2vec [2] +0.257 +0.0611 +0.962
+Our method +0.266 +0.254 +0.953

MRR. The results further show that the one-hop-based graph em-
bedding method with a carefully designed objective function can
perform as powerful as multi-hop-based graph embedding methods.

4.2 Online A/B Experiment

We introduce a new graph-based retrieval module to our news-feed
recommendation system and conduct an online A/B test. The intro-
duced graph-based retrieval module is not to replace the existing
retrieval modules. It works with them in parallel since there usu-
ally are many retrieval modules in the industrial recommendation
system for different purposes.

For node2vec and LINE, we apply the graph pipeline shown in
figure 2 since they need multi-hop sampling or global negative
sampling. The graph data gets updated at 2:00 a.m. each day using
all the users’ behaviors during the past two days. The proposed
method applies the pipeline shown in figure 3 since it only needs
one-hop neighbor sampling. Furthermore, our approach can be
independent of graph service and can support online graph learning.
20% of online traffic is applied to evaluate each method.

We show the effects of each approach on the business metric in
Table 4. Read/U and Duration/U are two important business metrics
in our system. Read/U represents the number of readings per user,
and Duration/U means how long per user stays in our application.
We can observe that introducing a graph-based retrieval in our
system can improve the Read/U metric. However, the performances
on the Duration/U metric are different. Our method achieves the
best on both the Read/U and Duration/U metrics. We deploy the
proposed approach in our recommendation system to improve the
user experience.

5 CONCLUSIONS

In this paper, we present a graph-based retrieval method for recom-
mendation systems. It is independent of graph service and ease-to-
deploy. We conduct extensive experiments to evaluate our approach.
Both the offline experiments and online A/B tests show the effec-
tiveness of our method. In our experiments, we only use the user
id and item id for graph embedding learning. For future work, we
will utilize the features in the training instance.
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