Spherical Graph Embedding for Item Retrieval in
Recommendation System

Wengiao Zhu
zhuwengqiao.ai@bytedance.com
Bytedance Inc.

Beijing, China

Qiyang Min
mingiyang@bytedance.com
Bytedance Inc.
Beijing, China

ABSTRACT

One of the challenging problems in large-scale recommendation
systems is to retrieve relevant candidates accurately and efficiently.
Graph-based retrievals have been widely deployed in industrial
recommendation systems. Previous graph-based methods depend
on integrated graph infrastructures because of inherent data depen-
dency in graph learning. However, it could be expensive to develop
a graph infrastructure. In this paper, we present a simple and ef-
fective graph-based retrieval method, which does not need any
graph infrastructures. We conduct extensive offline evaluations and
online tests in a real-world recommendation system. The results
show that the proposed method outperforms the existing methods.
The source code of our algorithm is available online!.

CCS CONCEPTS

« Information systems — Novelty in information retrieval.

KEYWORDS

Graph Embedding; Graph-Based Retrieval; Recommendation Sys-
tems

ACM Reference Format:

Wengiao Zhu, Yesheng Xu, Xin Huang, Qiyang Min, and Xun Zhou. 2022.
Spherical Graph Embedding for Item Retrieval in Recommendation System
. In Proceedings of the 31st ACM International Conference on Information and
Knowledge Management (CIKM ’22), October 17-21, 2022, Atlanta, GA, USA.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3511808.3557704

1 INTRODUCTION

Recommendation systems are important in various commercial
platforms. The objective of these systems is to connect users to
relevant items from a large corpus based on user features and

!https://github.com/WNQzhu/Q-align

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CIKM °22, October 17-21, 2022, Atlanta, GA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9236-5/22/10...$15.00
https://doi.org/10.1145/3511808.3557704

Yesheng Xu
xuyesheng@bytedance.com
Bytedance Inc.
Beijing, China

Xin Huang
hx@bytedance.com
Bytedance Inc.
Beijing, China

Xun Zhou
zhouxun@bytedance.com
Bytedance Inc.
Beijing, China

behaviors. Due to the large size of users and items, many industrial
systems consist of a retrieval stage and a ranking stage. The purpose
of a retrieval stage is to retrieve a small fraction of relevant items
at a low computational cost and latency, and a ranking stage is
deployed to further refine the ranking of these items according to
the user’s interest.

Item-based collaborative filtering (Item-CF) [8] is one of the
successful retrieval methods in recommendation systems. It con-
siders the similarities between items and items based on their co-
occurrence patterns. Recently, graph-based retrieval methods have
been widely adopted in industrial recommendations. Pinterest de-
ploys a data-efficient Graph Convolutional Network (GCN) algo-
rithm called Pinsage [13], which combines efficient random walks
and graph convolutions to generate embeddings of nodes. Alibaba
proposes a Path-based Deep Network (PDN) [4], which incorporates
both personalization and diversity to enhance retrieval performance.
PDN models the user-item relationship with a 2-hop graph.

Graph-based retrieval methods learn a low-dimensional embed-
ding for each node in a graph and consider the similarities between
node embeddings. Previous graph embedding methods, such as
DeepWalk [5], node2vec [2], and GraphSAGE [3], usually need to
sample multi-hop neighbors to achieve better performances. Due to
the multi-hop data dependency and large-scale graph data, indus-
trial recommendation systems need to incorporate a graph service
for graph learning. However, it could be expensive to develop such
a graph service. One needs to consider efficiency, scalability as well
as fault tolerance.

Capturing a node’s position within a graph is crucial for rec-
ommendation systems. Two users that view a lot of similar items
should have a small distance in the embedding space. Many pre-
vious graph embedding methods are structure-aware instead of
distance-aware [14]. DeepWalk [5] and node2vec [2] are distance-
aware methods. However, they do not explicitly model the distance
metric in the objective function, which limits their distance-aware
property. In our method, we design an objective function that ex-
plicitly considers the distance metric in spherical space.

In this paper, we present a simple graph-based retrieval method,
which does not need a graph service and can support online graph
embedding learning. To reduce the dependency of multi-hop neigh-
bors in graph learning, we apply only one-hop neighbors for each
node. Furthermore, we model the graph learning task in a spherical
space to improve the performance. We empirically find that our

https://orcid.org/0000-0003-4319-5349
https://doi.org/10.1145/3511808.3557704
https://doi.org/10.1145/3511808.3557704

CIKM 22, October 17-21, 2022, Atlanta, GA, USA

Figure 1: Previous graph embedding methods model the
neighbor interaction via inner-product in Euclid space. Our
method model the neighbor interaction via distance in spher-
ical space.

method achieves better results than other multi-hop-based methods,
such as DeepWalk and node2vec.

2 METHOD
2.1 Spherical Graph Embedding

We assume a user-item graph is represented as G = {V, E}, where
V ={v1,02,...,on} and & =V X V are node set and edge set re-
spectively. The node in graph G could be a user or an item. A graph
embedding method aims to learn a mapping function f : V — R4
that projects each node v; to a vector f(v;) in a d-dimensional
(d < N) space. We define N (u) as a K-hop neighborhood of u.
Graph embedding methods aim to maximize the log-probability
of observing a neighborhood Nk (u) of node u given its representa-

tion f(u):

max " log Pr (N (u)|f (). (1)
f ueV
Where
Pr(Ng(w)|f(w) =]_[Pr(ni|f(u)) @)
n,—eNK(u)

exp (f(ni) - f(w))
Zoev exp (f(0) - f(w))

Function (2) and (4) are known as conditional independence and
symmetry assumptions.

Previous methods model objective functions in Euclid space and
depend on multi-hop neighbor samplings. In this work, we model
the objective function in spherical space. Many works [12] from
other domains show that learning in spherical space achieves better
results. As shown in Figure 1, we define the symmetry assumption
function in spherical space as:

Pr(nilf(u)) =

®)

exp (—dz(ni, u))
Yoey exp (—d(v,u))

Pr(nilf(u) = ©

Wengiao Zhu et al.

where
fln) — f(w)
If(mallz [1f @llz]l
Under the conditional independence and symmetry assumptions,
the objective (1) is equivalent to:

d(nj,u) =

min Z a Z d?(n;, u) + flog Z, (5)
f ueV n; Nk (u)
Zu= > exp (—dz(u, o)) ©6)
veV

Z, is the per-node partition function. Following the parameter
settings in [12], we introduce two hyper-parameters « and f in
our objective function. To reduce the data dependency between
nodes, we set K = 1 in our implementation, and each node can
only sample its 1-hop neighbors, To minimize the function (5), we
approximate it using the in-batch negative sampling method and
optimize it using the stochastic gradient descent method.

2.2 System

Many industrial recommendation systems apply online learning
methods. All the user behaviors are converted to training instances
immediately for further training. Generally, a single training in-
stance can be formulated as:

(user id, item id, features, label)

The features consist of user features, item features, and context
features. A label indicates a user’s behavior on an item. For example,
we can define label = 1 if a user clicks an item, and label = 0 if the
user does not click an item.

Figure 2 shows the typical retrieval stage in an industrial recom-
mendation system. Most industrial recommendation systems deploy
multiple retrieval modules in parallel. We use Other Retrievals to
denote other retrieval modules and detail the graph-based retrieval
in Figure 2 since we focus on graph-based retrieval in this work.
From the training instances or all users’ behaviors in a time inter-
val, one can generate a user-item heterogeneous graph via Graph
Builder, which could be a MapReduce job. For example, if a user has
clicked an item, there could be an edge between them in the graph.
The Graph Builder usually runs daily to generate graph data since
the real industrial graph data could be huge. The Graph Service
module takes the generated graph data as input, and the Trainer
module samples nodes and edges from the Graph Service for graph
embedding learning.

However, the previous graph-based retrieval methods have a
few limitations. First, one needs to implement a graph service with
large memory and high bandwidth networks. The properties of fault
tolerance also should be considered. The multi-hop data dependency
and the graph scale lead to the need of a graph service.

In our method, we model the graph embedding learning in spher-
ical space and restrict the data dependency to be one-hop. Based
on this idea, we design a graph-based retrieval without resorting
to a graph service, as shown in Figure 3. In the training instances,
we introduce a new feature recent item id, which is the item a user
recently clicked. In a positive training instance (label=1), both the
user id and the recent item id could be viewed as a one-hop neighbor
of the item id in an implicit graph. We filter out all the negative

Spherical Graph Embedding for Item Retrieval in Recommendation System

CIKM 22, October 17-21, 2022, Atlanta, GA, USA

e e e e e s mm

| |
! Training instance - -
! ' Label | | Other Fine Graph
| | | . R k ~ .
o " |
1 | user id ‘ features | ‘ 1 ‘ N Retrievals ANKINg Trainer
| |
| w L
. ' [user | omtures || T R E T, -
user actions : user id ‘ features ‘ ! 0 | ' Graph Pipeline |
| | : 1 |
> | P @ user id |
| | a |
| | a |
o . |
| | user id ‘ features | ‘ 0 ‘ o 2% ?.. !
| | [|
! . ~ ! I Delet GI‘a h Dump |
' {user id ‘ features | ‘ 1 ‘ w Ne;fifes . D ooy Graph Service |
: ‘L ! Builder p |
—————]

— e e e e

5

I
! Training instance === .
| i Label " Other Fine
! I > . Ranki
1 | user id ’rcccnt item id ‘ ‘ features ‘ \‘ 1 ‘}: Retrievals ANKINgG
: : : : @® user id
. | . N . . Syl ‘ “
user actions | user id recent item id ‘ ‘ features ‘: 0 i
|
\I . : | : @ recent item id
> |
I | |
. 3 : ; | - |
| | user id ’rcccnt item id ‘ ‘ features ‘ “ 0 ‘}: Y Y
: : X N e e Graph
| caa |1 L
| user id ’ recent item id ‘ ‘ features ‘ :‘7 717 - ‘J " Detere Negaiver Trainer
N e e e e e e e — = = / (online)

Figure 3: Our method supports online graph embedding learning.

training instances, and the graph embedding trainer updates its
parameters based on the (item id, user id) and (item id, recent item
id) pairs, which are the edges in an implicit graph. In this way, we
do not need a graph service, and the learning method is online.

3 EXPERIMENTS ON PUBLIC DATASETS

In this section, we evaluate the proposed approach on the unsuper-
vised node classification task to answer the following questions:
How does our one-hop-based graph embedding method perform
compared to other methods? The CogDL toolkit [1] and the follow-
ing datasets are used for evaluation.

e BlogCatalog [15] is a social blogger graph. It has 10,312 nodes,
333,983 edges, and 39 different labels. The node labels are
the Bloggers’ interests.

e DBLP [10] is an academic citation graph where authors are
treated as nodes. It has 51,264 nodes, 127,968 edges and 60
different labels. The node labels are the authors’ dominant
conferences.

e Flickr [11] is a user contact graph in Flickr. It has 80,513
nodes, 5,899,882 edges and 195 different labels. The node
labels represent user’s interest groups.

We use SGD with momentum as the optimizer. The learning rate
is set with starting value of 0.025 and decays linearly to 0.0001.
The embedding size is set to 128. Table 2 shows the other param-
eters used by our method. For the other methods, we used the
parameters provided by the CogDL Toolkit [1] with the option
use_best_config=True. When evaluating node2vec and DeepWalk,
we set the walk length to 80. We randomly sample a portion of
labeled nodes for training and use the rest for testing. For Blog-
catalog, the training ratio is set to 50%. For DBLP and Flickr, the
training ratio is set to 5%. We run our method 5 times, and report
the mean result in table 1. From the results, we find that our method
outperforms node2vec and DeepWalk. The node2vec and DeepWalk
both are multi-hop-based methods. Compared with the one-hop-
based LINE method, our method achieves a significant performance
improvement.

We further compare our method with the matrix factorization(MF)
based methods. From table 1, we can find that MF-based methods

CIKM 22, October 17-21, 2022, Atlanta, GA, USA

Table 1: Micro-F; scores for multi-label node classification
on Blogcatalog, DBLP and Flicker graphs.

Method Blogcatalog (50%) DBLP (5%) Flickr (5%)
NetMF [7] 42.47+0.35 56.72+0.14 36.27+0.17
ProNE [16] 41.14£0.26 56.85+£0.28 36.56+0.11
NetSMF [6] 40.62+0.35 59.76+0.41 35.49+0.07
node2vec [2] 40.16+£0.29 57.36+0.39 36.13+0.13
LINE [9] 38.06+0.39 49.78+0.37 31.61+0.09
DeepWalk [5] 40.48+0.47 57.54+0.32 36.09+0.10
Our method 42.63+0.47 60.32+0.10 36.75+0.11

like NetMF[7] and ProNE[16] are very powerful as they achieve bet-
ter results than previous graph embedding based methods. However,
our method outperforms the MF-based methods on all datasets.

Table 2: The parameters used by our method.

Dataset batch size « B
Blogcatalog 128 05 0.75
DBLP 256 05 0.1
Flickr 512 0.5 1.5

4 LIVE EXPERIMENTS

In this section, we show our experiments in a real-world news-feed
application. It has hundreds of millions of users. We report both
the offline evaluation and the online A/B testing results.

4.1 Offline Evaluation

For offline evaluation, we build a user-item graph for training from
all users’ behaviors in one day and construct a graph for testing
from all users’ behaviors the next day. After training, we apply the
generated item embedding to evaluate the similarities between the
items in the testing graph. Specifically, we use Mean Reciprocal
Rank (MRR), which is a measure to evaluate systems that return a
list of recommended items for query items:

MRR—li !
o) T rank;

Due to the large pool of items, we roughly estimate the rank in
the following way. For each item g, we sample a neighbor item
p from the testing graph and randomly sample a batch of items
(n1,ng,- -+, np) from the item pool, where b = 512. The rank is esti-
mated by sorting the score list sim(q, p), sim(q, n1), - - -, sim(q, np),
where sim(, -) is a function to compute the inner product of the
normalized item embeddings. We set the batch size to be 512 for all
the methods. For node2vec, we use p = 1, ¢ = 1, and set the walk
length to be 20. For GraphSAGE, we use sample sizes S1=10 and S
= 10 for first and second hop sampling, respectively.

Table 3 compares the performance of the various approaches
using the MRR. Our method achieves the best performance at 0.0974

Wengiao Zhu et al.

Table 3: MRR for our method and other baselines.

Method MRR
node2vec [2] 0.0955
LINE [9] 0.0874
GraphSAGE [3] 0.0843
Our method 0.0974

Table 4: Online A/B testing results. An improvement of 0.2%
in Duration/U is regarded as significant in our system.

Method Read/U (%) Duration/U (%) Latency (%)
+LINE [9] +0.198 -0.0457 +0.923
+node2vec [2] +0.257 +0.0611 +0.962
+Our method +0.266 +0.254 +0.953

MRR. The results further show that the one-hop-based graph em-
bedding method with a carefully designed objective function can
perform as powerful as multi-hop-based graph embedding methods.

4.2 Online A/B Experiment

We introduce a new graph-based retrieval module to our news-feed
recommendation system and conduct an online A/B test. The intro-
duced graph-based retrieval module is not to replace the existing
retrieval modules. It works with them in parallel since there usu-
ally are many retrieval modules in the industrial recommendation
system for different purposes.

For node2vec and LINE, we apply the graph pipeline shown in
figure 2 since they need multi-hop sampling or global negative
sampling. The graph data gets updated at 2:00 a.m. each day using
all the users’ behaviors during the past two days. The proposed
method applies the pipeline shown in figure 3 since it only needs
one-hop neighbor sampling. Furthermore, our approach can be
independent of graph service and can support online graph learning.
20% of online traffic is applied to evaluate each method.

We show the effects of each approach on the business metric in
Table 4. Read/U and Duration/U are two important business metrics
in our system. Read/U represents the number of readings per user,
and Duration/U means how long per user stays in our application.
We can observe that introducing a graph-based retrieval in our
system can improve the Read/U metric. However, the performances
on the Duration/U metric are different. Our method achieves the
best on both the Read/U and Duration/U metrics. We deploy the
proposed approach in our recommendation system to improve the
user experience.

5 CONCLUSIONS

In this paper, we present a graph-based retrieval method for recom-
mendation systems. It is independent of graph service and ease-to-
deploy. We conduct extensive experiments to evaluate our approach.
Both the offline experiments and online A/B tests show the effec-
tiveness of our method. In our experiments, we only use the user
id and item id for graph embedding learning. For future work, we
will utilize the features in the training instance.

Spherical Graph Embedding for Item Retrieval in Recommendation System

REFERENCES

[1] Yukuo Cen, Zhenyu Hou, Yan Wang, Qibin Chen, Yizhen Luo, Xingcheng Yao,

[6

[7

=

Aohan Zeng, Shiguang Guo, Peng Zhang, Guohao Dai, Yu Wang, Chang Zhou,
Hongxia Yang, and Jie Tang. 2021. CogDL: Toolkit for Deep Learning on Graphs.
arXiv preprint arXiv:2103.00959 (2021).

Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for
Networks.. In KDD.

William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representation
Learning on Large Graphs. In NIPS.

Houyi Li, Zhihong Chen, Chenliang Li, Rong Xiao, Hongbo Deng, Peng Zhang,
Yongchao Liu, and Haihong Tang. 2021. Path-Based Deep Network for Candidate
Item Matching in Recommenders. Association for Computing Machinery, New
York, NY, USA, 1493-1502. https://doi.org/10.1145/3404835.3462878

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. 701-710.

Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Chi Wang, Kuansan Wang, and Jie
Tang. 2019. NetSMF: Large-Scale Network Embedding as Sparse Matrix Factor-
ization. In The World Wide Web Conference (San Francisco, CA, USA) (WWW
’19). Association for Computing Machinery, New York, NY, USA, 1509-1520.
https://doi.org/10.1145/3308558.3313446

Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. 2018.
Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE,
and Node2vec. In Proceedings of the Eleventh ACM International Conference on
Web Search and Data Mining (Marina Del Rey, CA, USA) (WSDM ’18). Association
for Computing Machinery, New York, NY, USA, 459-467. https://doi.org/10.
1145/3159652.3159706

Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-
Based Collaborative Filtering Recommendation Algorithms. In Proceedings of
the 10th International Conference on World Wide Web (Hong Kong, Hong Kong)
(WWW ’01). Association for Computing Machinery, New York, NY, USA, 285-295.
https://doi.org/10.1145/371920.372071

CIKM 22, October 17-21, 2022, Atlanta, GA, USA

[9] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. 2015.

[10

[11

[12

[13

[14

[15

[16

]

]

LINE: Large-scale Information Network Embedding. WWW - World Wide Web
Consortium (W3C). https://www.microsoft.com/en-us/research/publication/
line-large-scale-information- network-embedding/

Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008. Arnet-
Miner: Extraction and Mining of Academic Social Networks. In Proceedings of
the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (Las Vegas, Nevada, USA) (KDD *08). Association for Computing Machin-
ery, New York, NY, USA, 990-998. https://doi.org/10.1145/1401890.1402008

Lei Tang and Huan Liu. 2009. Relational Learning via Latent Social Dimensions. In
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (Paris, France) (KDD ’09). Association for Computing Ma-
chinery, New York, NY, USA, 817-826. https://doi.org/10.1145/1557019.1557109
Tongzhou Wang and Phillip Isola. 2020. Understanding Contrastive Represen-
tation Learning through Alignment and Uniformity on the Hypersphere. In
International Conference on Machine Learning. PMLR, 9929-9939.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton,
and Jure Leskovec. 2018. Graph Convolutional Neural Networks for Web-Scale
Recommender Systems. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (London, United Kingdom)
(KDD ’18). Association for Computing Machinery, New York, NY, USA, 974-983.
https://doi.org/10.1145/3219819.3219890

Jiaxuan You, Rex Ying, and Jure Leskovec. 2019. Position-aware Graph Neural
Networks. In Proceedings of the 36th International Conference on Machine Learning
(Proceedings of Machine Learning Research, Vol. 97), Kamalika Chaudhuri and
Ruslan Salakhutdinov (Eds.). PMLR, 7134-7143. https://proceedings.mlr.press/
v97/you19b.html

R. Zafarani and H. Liu. 2009. Social Computing Data Repository at ASU. http:
//socialcomputing.asu.edu

Jie Zhang, Yuxiao Dong, Yan Wang, Jie Tang, and Ming Ding. 2019. ProNE: Fast
and Scalable Network Representation Learning. In International Joint Conference
on Artificial Intelligence (IJCAI). https://www.microsoft.com/en-us/research/
publication/prone-fast-and-scalable- network-representation-learning/

https://doi.org/10.1145/3404835.3462878
https://doi.org/10.1145/3308558.3313446
https://doi.org/10.1145/3159652.3159706
https://doi.org/10.1145/3159652.3159706
https://doi.org/10.1145/371920.372071
https://www.microsoft.com/en-us/research/publication/line-large-scale-information-network-embedding/
https://www.microsoft.com/en-us/research/publication/line-large-scale-information-network-embedding/
https://doi.org/10.1145/1401890.1402008
https://doi.org/10.1145/1557019.1557109
https://doi.org/10.1145/3219819.3219890
https://proceedings.mlr.press/v97/you19b.html
https://proceedings.mlr.press/v97/you19b.html
http://socialcomputing.asu.edu
http://socialcomputing.asu.edu
https://www.microsoft.com/en-us/research/publication/prone-fast-and-scalable-network-representation-learning/
https://www.microsoft.com/en-us/research/publication/prone-fast-and-scalable-network-representation-learning/

	Abstract
	1 Introduction
	2 Method
	2.1 Spherical Graph Embedding
	2.2 System

	3 Experiments on Public Datasets
	4 Live Experiments
	4.1 Offline Evaluation
	4.2 Online A/B Experiment

	5 Conclusions
	References

